
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-11, Nov- 2015]

ISSN: 2349-6495

www.ijaers.com Page | 53

Parallel Graph Computation using a Partition
Aware Engine: Review Paper

 Mr. S. B. Shirsath1, Prof. S. R. Durugkar2

1Department of Comp. Engg., SNDCOE & RC, Maharashtra, India
2Head, Department Comp. Engg, SNDCOE & RC, Maharashtra, India

Abstract— A Partition Aware Engine framework
provides a major increase in compression with respect to
all currently known techniques, both on web graphs and
on social networks. These improvements make it possible
to analyse in main memory significantly larger graphs.
Graph partition quality affects the overall performance of
parallel graph computation systems. The quality of a
graph partition is measured by the balance factor and
edge cut ratio. A balanced graph partition with small
edge cut ratio is generally preferred since it reduces the
expensive network communication cost. However,
according to an empirical study on Giraph, the
performance over well partitioned graph might be even
two times worse than simple random partitions. This is
because these systems only optimize for the simple
partition strategies and cannot efficiently handle the
increasing workload of local message processing when a
high quality graph partition is used. In this paper, we
propose a novel partition aware graph computation
engine named PAGE, which equips a new message
processor and a dynamic concurrency control model. In
this paper, we propose a new paradigm, Partition Aware
Engine framework that allows parametric control of
asynchrony ranging from completely asynchronous
execution to partially asynchronous execution to level-
synchronous execution. Partial asynchrony is achieved by
generalizing the BSP model to allow each super step to
process up to k levels of the algorithm asynchronously. In
the model, we studying on two heuristic rules to
effectively extract the system characters and generate
proper parameters.
Keywords—Message Processing, Parallel Graph, Graph
Partition, Graph Computation.

I. INTRODUCTION

Database Parallel graph algorithms are currently
expressed in level synchronous or asynchronous
paradigms. Level-synchronous paradigms iteratively
process vertices of a graph level by level. This model
guarantees the current level’s computation to have
completed before starting the next one through the use of
global synchronizations at the end of each level. Level-
synchronous algorithms tend to perform well when the

number of levels is small, but suffer from poor scalability
when the number of levels is large. Bulk synchronous
parallel (BSP) algorithms can naturally be expressed in
this paradigm. The asynchronous paradigm replaces
global synchronizations with point-to-point
synchronizations, which can increase the degree of
parallelism, but which may also require the completion of
redundant work. For example, an asynchronous breadth-
first search (BFS) may re-visit vertices multiple times as
shorter paths are discovered. Choosing the right paradigm
depends on the system, input graph, and algorithm. This
implies different implementations and optimizations for
algorithms, with no easy way to switch between them.

II. SURVEY REVIEW
1. Harshvardhan show how common patterns in graph

algorithms can be expressed in the KLA paradigm
and provide techniques for determining k, the number
of asynchronous steps allowed between global
synchronizations. Results of an implementation of
KLA in the staple Graph Library show excellent
scalability on up to 96K cores and improvements of
10x or more over level synchronous and
asynchronous versions for graph algorithms such as
breadth-first search, PageRank, k-core decomposition
and others on certain classes of real-world graphs.

2. Amr Ahmed proposes a framework for large-scale
graph decomposition and inference. To resolve the
scale, our framework is distributed so that the data
are partitioned over a shared nothing set of machines.
They propose a novel factorization technique that
relies on partitioning a graph so as to minimize the
number of neighbouring vertices rather than edges
across partitions. System decomposition is based on a
streaming algorithm. It is network-aware as it adapts
to the network topology of the underlying
computational hardware.

3. Nathan Backman present a framework that
parallelizes and schedules workflows of stream
operators, in real-time, to meet latency objectives. It
supports data- and task-parallel processing of all
workflow operators, by all computing nodes, while
maintaining the ordering properties of sorted data

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-11, Nov- 2015]

ISSN: 2349-6495

www.ijaers.com Page | 54

streams. System show that a latency-oriented
operator scheduling policy coupled with the
diversification of computing node responsibilities
encourages parallelism models that achieve end-to-
end latency-minimization goals.

4. Lars Backstrom use decision-tree techniques to
identify the most significant structural determinants
of these properties. Also develop a novel
methodology for measuring movement of individuals
between communities, and show how such
movements are closely aligned with changes in the
topics of interest within the communities.

5. Paolo Boldi presents the compression techniques
used in Web Graph, which are centred around
referentiation and intervalisation (which in turn are
dual to each other). Web Graph can compress the
WebBase graph (118 Mnodes, 1 Glinks) in as little as
3.08 bits per link, and its transposed version in as
little as 2.89 bits per link.

6. Marco Rosa proposed algorithm with the Web Graph
compression framework provides a major increase in
compression with respect to all currently known
techniques, both on web graphs and on social
networks. These improvements make it possible to
analyse in main memory significantly larger graphs.

III. PARALELL IMPLEMENTATION

Layered label propagation lends itself naturally to the
task-decomposition parallel-programming paradigm,
which may dramatically improve performances on
modern multicore architectures: since the update order is
randomised, there is no obstacle in updating several nodes
in parallel. Our implementation breaks the set of nodes
into a very small number of tasks (in the order of
thousands). A large number of threads picks up the first
available task and solves it: as a result, we obtain a
performance improvement that is linear in the number of
cores. We are helped by Web Graph’s facility, which
allows us to provide each thread with a lightweight copy
of the graph that shares the bit stream and associated
information with all other threads.

IV. CHALLENGES
Latent variable modelling is a promising technique for
many analytics and predictive inference applications.
However, parallelization of such models is difficult since
many latent variable models require frequent
synchronization of their state. The power law nature of
such graphs makes it difficult to use chromatic
scheduling. Furthermore, the bulk-synchronous
processing paradigm of Map-Reduce does not afford low-
enough latency for fast convergence: this has been
reported, e.g. in comparisons between bulk-synchronous

convergence and asynchronous convergence.
Consequently there is a considerable need for algorithms
which address the following issues when performing
inference on large natural graphs:
Graph Partitioning We need to find a communication
efficient partitioning of the graph in such a manner as to
ensure that the number of neighbouring vertices rather
than the number of edges is minimized. This is relevant
since latent variable models and their inference
algorithms store and exchange parameters that are
associated with vertices rather than edges.
 Network Topology In many graph-based applications
the cost of communication (and to some extent also
computation) the cost of storing data. Hence it is desirable
to have an algorithm which is capable to layout data in a
network-friendly fashion on the fly once we know the
computational resources.
Variable Replication While the problem of variable
synchronization for statistical inference with regular
structure is by now well understood, the problem for
graphs is more complex: The state space is much larger
(each vertex holds parts of a state), rendering
synchronization much more costly – unlike in aspect
models only few variables are global for all partitions.
Asynchronous Communication Finally there is the
problem of eliminating the synchronization step in
traditional bulk-synchronous systems on graphs. More
specifically, uneven load distribution can lead to
considerable inefficiencies in the bulk synchronous
setting. After all, it is the slowest machine that determines
the runtime of each processing round (e.g. Map Reduce).
Asynchronous schemes, on the other hand, are nontrivial
to implement as they often require elaborate locking and
scheduling strategies.

V. DYNAMIC CONCURRENCY CONTROL

MODEL
The concurrency control problem can be modelled as a
typical producer-consumer scheduling problem, where the
computation phase generates messages as a producer, and
message process units in the dual concurrent message
processor are the consumers. Therefore, the producer-
consumer constraints should be satisfied when solving the
concurrency control problem.
The concurrency of dual concurrent message processor
heavily affects the performance. But it is expensive and
also challenging to determine a reasonable concurrency
ahead of real execution without any assumption.
Therefore, PAGE needs a mechanism to adaptively tune
the concurrency of the dual concurrent message
processor. The mechanism is named Dynamic
Concurrency Control Model, DCCM for short.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-11, Nov- 2015]

ISSN: 2349-6495

www.ijaers.com Page | 55

For the PAGE situation, the concurrency control problem
arises consumer constraints. Since the behaviour of
producers is determined by the graph algorithms, PAGE
only requires to adjust the consumers to satisfy the
constraints (behaviour of graph algorithms), which are
stated as follows.
First, PAGE provides sufficient message process units to
make sure that new incoming message blocks can be
processed immediately and do not block the whole
system. Meanwhile, no message process unit is idle.
Second, the assignment strategy of these message process
units ensures that each local/remote message process unit
has balanced workload since the disparity can seriously
destroy the overall performance of parallel processing.

VI. CONCLUSION

Finally we conclude that our study of the partition
unaware problem in current graph computation systems
and its severe drawbacks for efficient parallel large scale
graphs processing. To address this problem, we proposed
a partition aware graph computation engine named
Parallel Graph Computation using a Partition Aware
Engine that monitors three high-level key running metrics
and dynamically adjusts the system configurations.

REFERENCES
[1] Yingxia Shao, Bin Cui, Senior, "PAGE: A Partition

Aware Engine for Parallel Graph Computation",
IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, VOL. 27, NO. 2,
FEBRUARY 2015.

[2] A. Amr, S. Nino, N. Shravan, J. Vanja, and S. J.
Alexander, “Distributed large scale natural graph
factorization,” in Proc. 22nd Int. Conf. World Wide
Web, 2013, pp. 37–48.

[3] N. Backman, R. Fonseca, and U. C¸ et intemel,
“Managing parallelism for stream processing in the
cloud,” in Proc. 1st Int. Workshop Hot Topics Cloud
Data Process., 2012, pp. 1:1–1:5.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X.
Lan, “Group formation in large social networks:
Membership, growth, and evolution,” in Proc. 12th
ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2006, pp. 44–54.

[5] P. Boldi and S. Vigna, “The webgraph framework I:
Compression techniques,” in Proc. 13th Int. Conf.
World Wide Web, 2004, pp. 595– 602.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna,
“Layered label propagation: A multire solution
coordinate-free ordering for compressing social
networks,” in Proc. 20th Int. Conf. World Wide Web,
2011, pp. 587–596.

[7] S. Brin and L. Page, “The anatomy of a large-scale
hyper textual web search engine,” in Proc. 7th Int.
Conf. World Wide Web, 1998, pp. 107–117.

[8] A. Chan, F. Dehne, and R. Taylor,
“CGMGRAPH/CGMLIB: Implementing and testing
CGM graph algorithms on PC clusters and shared
memory machines,” J. High Perform. Comput. Appl.,
pp. 81–97, 2005.

[9] G. Cong, G. Almasi, and V. Saraswat, “Fast PGAS
implementation of distributed graph algorithms,” in
Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2010, pp. 1–11.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” in Proc. Operating
Syst. Des. Implementation, 2004, pp. 107–113.

[11] D. Gregor and A. Lumsdaine, “The parallel BGL: A
generic library for distributed graph computations,”
in Proc. Parallel Object-Oriented Sci. Comput., 2005,
pp. 1–18.

[12] C. A. R. Hoare, “Communicating sequential
processes,” Commun. ACM, vol. 21, pp. 666–677,
1978.

[13] U. Kang, C. E. Tsourakakis, and C. Faloutsos,
“PEGASUS: A petascale graph mining system
implementation and observations,” in Proc. IEEE 9th
Int. Conf. Data Mining, 2009, pp. 229–238.

[14] G. Karypis and V. Kumar, “Multilevel algorithms for
multiconstraint graph partitioning,” in Proc.
ACM/IEEE Conf. Supercomput., 1998, pp. 1–13.

[15] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-
stream: Edgecentric graph processing using
streaming partitions,” in Proc. 24th ACM Symp.
Operating Syst. Principles, 2013, pp. 472–488.

[16] S. Salihoglu and J. Widom, “GPS: A graph
processing system,” in Proc. 25th Int. Conf. Sci.
Statist. Database Manage., 2013, pp. 22:1–22:12.

[17] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed
graph engine on a memory cloud,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2013, pp. 505–
516.

[18] H. Simonis and T. Cornelissens, “Modelling
producer/consumerconstraints,” in Proc. 1st Int.
Conf. Principles Practice Constraint Program.,1995,
pp. 449–462.

[19] I. Stanton and G. Kliot, “Streaming graph
partitioning for large distributed graphs,” in Proc.
18th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2012, pp. 1222–1230.

[20] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M.
Vojnovic, “Fennel: Streaming graph partitioning for
massive scale graphs,” in Proc. Int. ACM Conf. Web
Search Data Mining, 2014, pp. 333–342.

