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Abstract— A Partition Aware Engine framework 
provides a major increase in compression with respect to 
all currently known techniques, both on web graphs and 
on social networks. These improvements make it possible 
to analyse in main memory significantly larger graphs. 
Graph partition quality affects the overall performance of 
parallel graph computation systems. The quality of a 
graph partition is measured by the balance factor and 
edge cut ratio. A balanced graph partition with small 
edge cut ratio is generally preferred since it reduces the 
expensive network communication cost. However, 
according to an empirical study on Giraph, the 
performance over well partitioned graph might be even 
two times worse than simple random partitions. This is 
because these systems only optimize for the simple 
partition strategies and cannot efficiently handle the 
increasing workload of local message processing when a 
high quality graph partition is used. In this paper, we 
propose a novel partition aware graph computation 
engine named PAGE, which equips a new message 
processor and a dynamic concurrency control model. In 
this paper, we propose a new paradigm, Partition Aware 
Engine framework that allows parametric control of 
asynchrony ranging from completely asynchronous 
execution to partially asynchronous execution to level-
synchronous execution. Partial asynchrony is achieved by 
generalizing the BSP model to allow each super step to 
process up to k levels of the algorithm asynchronously. In 
the model, we studying on two heuristic rules to 
effectively extract the system characters and generate 
proper parameters. 
Keywords—Message Processing, Parallel Graph, Graph 
Partition, Graph Computation. 

 
I.  INTRODUCTION 

Database Parallel graph algorithms are currently 
expressed in level synchronous or asynchronous 
paradigms. Level-synchronous paradigms iteratively 
process vertices of a graph level by level. This model 
guarantees the current level’s computation to have 
completed before starting the next one through the use of 
global synchronizations at the end of each level. Level-
synchronous algorithms tend to perform well when the 

number of levels is small, but suffer from poor scalability 
when the number of levels is large. Bulk synchronous 
parallel (BSP) algorithms can naturally be expressed in 
this paradigm. The asynchronous paradigm replaces 
global synchronizations with point-to-point 
synchronizations, which can increase the degree of 
parallelism, but which may also require the completion of 
redundant work. For example, an asynchronous breadth-
first search (BFS) may re-visit vertices multiple times as 
shorter paths are discovered. Choosing the right paradigm 
depends on the system, input graph, and algorithm. This 
implies different implementations and optimizations for 
algorithms, with no easy way to switch between them. 
 

II.  SURVEY REVIEW  
1. Harshvardhan show how common patterns in graph 

algorithms can be expressed in the KLA paradigm 
and provide techniques for determining k, the number 
of asynchronous steps allowed between global 
synchronizations. Results of an implementation of 
KLA in the staple Graph Library show excellent 
scalability on up to 96K cores and improvements of 
10x or more over level synchronous and 
asynchronous versions for graph algorithms such as 
breadth-first search, PageRank, k-core decomposition 
and others on certain classes of real-world graphs. 

2. Amr Ahmed proposes a framework for large-scale 
graph decomposition and inference. To resolve the 
scale, our framework is distributed so that the data 
are partitioned over a shared nothing set of machines. 
They propose a novel factorization technique that 
relies on partitioning a graph so as to minimize the 
number of neighbouring vertices rather than edges 
across partitions. System decomposition is based on a 
streaming algorithm. It is network-aware as it adapts 
to the network topology of the underlying 
computational hardware. 

3. Nathan Backman present a framework that 
parallelizes and schedules workflows of stream 
operators, in real-time, to meet latency objectives. It 
supports data- and task-parallel processing of all 
workflow operators, by all computing nodes, while 
maintaining the ordering properties of sorted data 
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streams. System show that a latency-oriented 
operator scheduling policy coupled with the 
diversification of computing node responsibilities 
encourages parallelism models that achieve end-to-
end latency-minimization goals.  

4. Lars Backstrom use decision-tree techniques to 
identify the most significant structural determinants 
of these properties. Also develop a novel 
methodology for measuring movement of individuals 
between communities, and show how such 
movements are closely aligned with changes in the 
topics of interest within the communities. 

5. Paolo Boldi presents the compression techniques 
used in Web Graph, which are centred around 
referentiation and intervalisation (which in turn are 
dual to each other). Web Graph can compress the 
WebBase graph (118 Mnodes, 1 Glinks) in as little as 
3.08 bits per link, and its transposed version in as 
little as 2.89 bits per link. 

6. Marco Rosa proposed algorithm with the Web Graph 
compression framework provides a major increase in 
compression with respect to all currently known 
techniques, both on web graphs and on social 
networks. These improvements make it possible to 
analyse in main memory significantly larger graphs. 
 
III.  PARALELL IMPLEMENTATION 

Layered label propagation lends itself naturally to the 
task-decomposition parallel-programming paradigm, 
which may dramatically improve performances on 
modern multicore architectures: since the update order is 
randomised, there is no obstacle in updating several nodes 
in parallel. Our implementation breaks the set of nodes 
into a very small number of tasks (in the order of 
thousands). A large number of threads picks up the first 
available task and solves it: as a result, we obtain a 
performance improvement that is linear in the number of 
cores. We are helped by Web Graph’s facility, which 
allows us to provide each thread with a lightweight copy 
of the graph that shares the bit stream and associated 
information with all other threads. 
 

IV.  CHALLENGES 
Latent variable modelling is a promising technique for 
many analytics and predictive inference applications. 
However, parallelization of such models is difficult since 
many latent variable models require frequent 
synchronization of their state. The power law nature of 
such graphs makes it difficult to use chromatic 
scheduling. Furthermore, the bulk-synchronous 
processing paradigm of Map-Reduce does not afford low-
enough latency for fast convergence: this has been 
reported, e.g. in comparisons between bulk-synchronous 

convergence and asynchronous convergence. 
Consequently there is a considerable need for algorithms 
which address the following issues when performing 
inference on large natural graphs: 
Graph Partitioning We need to find a communication 
efficient partitioning of the graph in such a manner as to 
ensure that the number of neighbouring vertices rather 
than the number of edges is minimized. This is relevant 
since latent variable models and their inference 
algorithms store and exchange parameters that are 
associated with vertices rather than edges. 
 Network Topology In many graph-based applications 
the cost of communication (and to some extent also 
computation) the cost of storing data. Hence it is desirable 
to have an algorithm which is capable to layout data in a 
network-friendly fashion on the fly once we know the 
computational resources.  
Variable Replication While the problem of variable 
synchronization for statistical inference with regular 
structure is by now well understood, the problem for 
graphs is more complex: The state space is much larger 
(each vertex holds parts of a state), rendering 
synchronization much more costly – unlike in aspect 
models only few variables are global for all partitions. 
Asynchronous Communication Finally there is the 
problem of eliminating the synchronization step in 
traditional bulk-synchronous systems on graphs. More 
specifically, uneven load distribution can lead to 
considerable inefficiencies in the bulk synchronous 
setting. After all, it is the slowest machine that determines 
the runtime of each processing round (e.g. Map Reduce). 
Asynchronous schemes, on the other hand, are nontrivial 
to implement as they often require elaborate locking and 
scheduling strategies. 

 
V. DYNAMIC CONCURRENCY CONTROL 

MODEL 
The concurrency control problem can be modelled as a 
typical producer-consumer scheduling problem, where the 
computation phase generates messages as a producer, and 
message process units in the dual concurrent message 
processor are the consumers. Therefore, the producer-
consumer constraints should be satisfied when solving the 
concurrency control problem. 
The concurrency of dual concurrent message processor 
heavily affects the performance. But it is expensive and 
also challenging to determine a reasonable concurrency 
ahead of real execution without any assumption. 
Therefore, PAGE needs a mechanism to adaptively tune 
the concurrency of the dual concurrent message 
processor. The mechanism is named Dynamic 
Concurrency Control Model, DCCM for short. 
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For the PAGE situation, the concurrency control problem 
arises consumer constraints. Since the behaviour of 
producers is determined by the graph algorithms, PAGE 
only requires to adjust the consumers to satisfy the 
constraints (behaviour of graph algorithms), which are 
stated as follows. 
First, PAGE provides sufficient message process units to 
make sure that new incoming message blocks can be 
processed immediately and do not block the whole 
system. Meanwhile, no message process unit is idle. 
Second, the assignment strategy of these message process 
units ensures that each local/remote message process unit 
has balanced workload since the disparity can seriously 
destroy the overall performance of parallel processing. 

 
VI.  CONCLUSION 

Finally we conclude that our study of the partition 
unaware problem in current graph computation systems 
and its severe drawbacks for efficient parallel large scale 
graphs processing. To address this problem, we proposed 
a partition aware graph computation engine named 
Parallel Graph Computation using a Partition Aware 
Engine that monitors three high-level key running metrics 
and dynamically adjusts the system configurations.  
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